may enable MINDO parameters to be determined for elements in cases where thermochemical data are lacking.

References and Notes

(1) This work was supported by the Air Force Office of Scientific Research (Contract No. F44620-71-C-0119) and the Robert A. Welch Foundation (Grant No. F-126). The calculatlons were carried out using the CDC 6400/6600 computer at the Unlversity of Texas Computation Center.
(2) E. A. C. Lucken, 'Nuclear Quadrupole Coupling Constants", Academic Press, London, 1969.
(3) R. C. Blngham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1302 (1975).
(4) The off-dlagonal integral $q_{1 \alpha, \mid \alpha}^{\alpha}$ vanishes unless $h=1_{1} \pm 2$, a condition that cannot be met since we do not include d AO's.
(5) J. O. Petke and J. L. Whitten, J. Chem. Phys., 59, 4855 (1973).
(6) P. Grigolinl and R. Moccla, J. Chem. Phys., 57, 1369 (1972).
(7) L. C. Snyder and H. Basch, "Molecular Wave Functions and Propertles"', Wlley, New York, N.Y., 1972.
(8) Estimated by least-squares fit to eq 7, omitting the values for HN_{3}.
(9) C. T. O'Konskl and T. K. Ha, J. Chem. Phys., 49, 5354 (1968).
(10) Robert A. Welch Postdoctoral Fellow.

Michael J. S. Dewar, ${ }^{*}$ Herbert W. Kollmar, ${ }^{10}$ Sung Ho Suck
Department of Chemistry. The University of Texas at Austin
Austin, Texas 78712
Received July 24, 1974

Proton Affinity and the Frontier Orbital Concept. Predictions and Pitfalls

Sir:
Application of the frontier orbital concept ${ }^{1}$ to the problem of proton attack was implicit in the work of Hieber ${ }^{2}$ in which he considered the proton in metal hydrides to be "buried" in the metal electron density. Pitzer ${ }^{3}$ rationalized the structure of diborane by considering its formation as resulting from a double proton attack on the π orbital of the hypothetical $\mathrm{B}_{2} \mathrm{H}_{4}{ }^{2-}$ to give the bridged structure.

In this communication we wish to predict the site of proton attack on $\mathrm{CH}_{3} \mathrm{X}(\mathrm{X}=\mathrm{OH}, \mathrm{Cl}, \mathrm{Br}$, and I$), \mathrm{NF}_{3}, \mathrm{HOF}$, and $\mathrm{Fe}(\mathrm{CO})_{s}$ by making use of the fundamental relationship between the first ionization potential (IP) of a molecule and the proton affinity (PA).
For an electron donor B the following thermochemical cycle is valid

$$
\begin{gather*}
\mathrm{BH}^{+} \rightarrow \mathrm{B}+\mathrm{H}^{+} \quad \Delta H=\mathrm{PA}(\mathrm{~B}) \tag{1}\\
\mathrm{BH}^{+} \rightarrow \mathrm{B}^{+}+\mathrm{H} \quad \Delta H=D\left(\mathrm{~B}^{+}-\mathrm{H}\right) \tag{2}\\
\mathrm{PA}(\mathrm{~B})=\mathrm{IP}(\mathrm{H})-\mathrm{IP}(\mathrm{~B})+D\left(\mathrm{~B}^{+}-\mathrm{H}\right) \tag{3}
\end{gather*}
$$

where $\operatorname{IP}(H)=13.598 \mathrm{eV}$ and $\operatorname{IP}(B)$ is the first IP of B. The PA may arbitrarily be divided into two hypothetical steps. In the first one, the proton attacks the highest occupied molecular orbital (HOMO) and one electron is transferred from B to H^{+}. It is this orbital which is ionized in the $\operatorname{IP}(B)$ term of eq 3. If no bond were to be formed we would obtain $\mathrm{PA}(\mathrm{B})=\mathrm{IP}(\mathrm{H})-\mathrm{IP}(\mathrm{B})$. In the second step, the separated atoms B^{+}and H unite to form BH^{+}with a bond strength $D\left(\mathrm{~B}^{+}-\mathrm{H}\right)$. In this simple analysis, the final position of proton attachment will correspond to the initial site of attack. Subtle electronic energy effects may cause proton migration, however, particularly if there is a large amount of charge rearrangement in B^{+}compared to B .

According to Fukui's first postulate, ${ }^{1}$ the initial point of attack by an electrophile (in this case the proton) will occur at the position of highest electron density in the HOMO. The localization of the HOMO may be determined by a judicious interpretation of ultraviolet photoelectron spectroscopy (UPS) data. For instance, the UPS of the following molecules has been obtained: $\mathrm{CH}_{3} \mathrm{OH},{ }^{4} \mathrm{CH}_{3} \mathrm{Cl},{ }^{5} \mathrm{CH}_{3} \mathrm{Br},{ }^{5}$
$\mathrm{CH}_{3} I,{ }^{5} \mathrm{NF}_{3},{ }^{6} \mathrm{HOF},{ }^{7}$ and $\mathrm{Fe}(\mathrm{CO})_{5} .{ }^{8}$ In each case, the first band in the UPS corresponds to electron ejection from an orbital largely localized on the atom which is in italic. This is the position for which proton attack is predicted. Consideration of the symmetry properties of the HOMO allows one to predict the direction of attack, but this information is usually not directly available from UPS. However, utilizing simple MO concepts we would predict, for example, that proton attack on $\mathrm{CH}_{3} \mathrm{Cl}$ would occur along a line perpendicular to the $\mathrm{C}-\mathrm{Cl}$ axis. Likewise, attack on HOF would occur along a line perpendicular to the plane of the molecule.

For $\mathrm{CH}_{3} \mathrm{OH}$ and HOF , these predicted results agree with the results of ab initio calculations ${ }^{9}$ regarding the position of proton attachment. For $\mathrm{CH}_{3} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ the result is what one would expect intuitively, namely, attack at the lone pair on the halogen. For $\mathrm{Fe}(\mathrm{CO})_{5}{ }^{10}$ and $\mathrm{NF}_{3}{ }^{11}$ the prediction is in agreement with experimental results, albeit the studies on $\mathrm{Fe}(\mathrm{CO})_{5}$ were carried out in solution whereas our prediction strictly holds only in the gas phase.

There are two molecules for which predictions are not so straightforward. The first is $\mathrm{CH}_{3} \mathrm{~F}$ where a cursory examination of the photoelectron spectrum would assign the first band as arising predominantly from the CH_{3} group since it occurs near the first IP of CH_{4}. However, the adiabatic (and vertical) IP of $\mathrm{CH}_{3} \mathrm{~F}$ is less than that for $\mathrm{CH}_{4}{ }^{12}$ This is contrary to what one would expect on the basis of inductive effects but can be rationalized by a considerable mesomeric effect ${ }^{13}$ of fluorine with the CH_{3} group. Further evidence for the strong mixing of CH_{3} and F orbitals in the le and 2 e molecular orbitals is provided by the fact that the UPS exhibits no sharp band due to the fluorine lone pairs in the region of 15.8 eV , such as is observed in HF. ${ }^{14}$ We conclude that in $\mathrm{CH}_{3} \mathrm{~F}$ there is substantial delocalization of the HOMO and hence no prediction can be made regarding the position of proton attack.
The ab initio calculation ${ }^{12}$ on $\mathrm{CH}_{3} \mathrm{~F}$ indicates that the HOMO (2e), although containing a sizeable $\mathrm{C}-\mathrm{H}$ bonding component, is considerably $\mathrm{C}-\mathrm{F}$ antibonding. This is a result of delocalization. Calculations utilizing the semiempirical CNDO/2 and INDO molecular orbital methods ${ }^{15}$ also indicate that the HOMO is nearly equally divided between the CH_{3} and F moieties, just as in the isoelectronic F_{2} molecule. The structure of protonated $\mathrm{CH}_{3} \mathrm{~F}$ is not known, but ab initio calculations ${ }^{9}$ indicate that it has a structure similar to that of the isoelectronic $\mathrm{CH}_{3} \mathrm{OH}$ molecule.

A second example which illustrates the cautions which must be observed in this application of the frontier orbital concept is provided by ferrocene. The first two peaks in the UPS have been assigned to ${ }^{2} \mathrm{E}_{2 \mathrm{~g}}$ and ${ }^{2} \mathrm{~A}_{1 \mathrm{~g}}$ ionic states, corresponding to electron ejection out of orbitals predominantly of Fe 3 d character. ${ }^{16}$ However, the molecular ground state calculation indicates the HOMO's to be ligand π nonbonding, $e_{1 g}$ and $e_{14} .{ }^{17}$ In such a case, when the order of one-electron orbital energies is different from the order of corresponding ionic states in the UPS, a breakdown in Koopmans' theorem is indicated. ${ }^{17}$ Consequently, the concept of HOMO is meaningless and no prediction as to the position of proton attack can be made. Experimentally, ferrocene has been shown to protonate both at the iron atom and at the ring. ${ }^{18}$

Finally, we wish to show the utility of the frontier orbital concept in predicting the structure of products resulting from electrophilic attack in a more general system. Such an example is provided by the reaction ${ }^{19}$ (in solution) of " Cl^{+}" with ClF to product ClClF^{+}; that is, the " Cl^{+}" attacks the chlorine atom and not the fluorine atom. The HOMO in ClF is of π character mainly localized on chlorine. ${ }^{20}$ We can therefore also rationalize the fact that ClClF^{+}is a bent
molecule. We conclude that this reaction and those of proton attack discussed above are frontier-controlled and not charge controlled. ${ }^{21}$

Acknowledgment. The author wishes to thank several colleagues at the American University of Beirut for helpful suggestions and the Arts and Sciences Research Committee for a research grant.

References and Notes

(1) K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu, J. Chem. Phys., 22, 1433 (1954).
(2) W. Hleber, Chemie, 55, 24 (1942)
(3) K. S. Pitzer, J. Am. Chem. Soc., 67, 1126 (1945).
(4) J. H. D. Eland, 'Photoelectron Spectroscopy"', Butterworths, London, 1974, p 22; S. Katsumata, T. Iwai, and K. Kimura, Bull. Chem. Soc. Jpn., 46, 3391 (1973); A. D. Baker, D. Betterldge, N. R. Kemp, and R. E. Kirby, Anal. Chem., 43, 375 (1971).
(5) J. L. Ragle, I. A. Stenhouse, D. C. Frost, and C. A. McDowell, J. Chem. Phys., 53, 178 (1970).
(6) P. J. Bassett and D. R. Lloyd, J. Chem. Soc., Datton Trans., 248 (1972).
(7) J. Berkowitz, J. L. Dehmer, and E. H. Appleman, Chem. Phys. Lett., 19, 334 (1973); D. P. Chong, F. G. Herring, and D. McWillams Chem. Phys. Lett., 25, 568 (1974).
(8) D. R. Lloyd and E. W. Schlag, Inorg. Chem., 8, 2544 (1969).
(9) W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Llisle, and J. A. Pople, Prog. Phys. Org. Chem., 11, 175 (1974).
(10) Z. lqbal and T. C. Waddington, J. Chem. Soc. A, 2958 (1968)
(11) D. Hoitz, J. L. Beauchamp, W. G. Henderson, and R. W. Taft, Inorg. Chem., 10, 201 (1971).
(12) C. R. Brundle, M. B. Robin, and H. Basch, J. Chem. Phys., 53, 2196 (1970).
(13) D. G. Streets, Chem. Phys. Lett., 28, 555 (1974)
(14) H. J. Lempka, T. R. Passmore, and W. C. Price, Proc. R. Soc. London, Ser. A, 304, 53 (1968).
(15) D. L. Beveridge and J. A. Pople, "Approximate Molecular Orbital Theory' ${ }^{\prime}$, McGraw-HIII, New York, N.Y., 1970. The calculations were carried out on the IBM 370/125 computer at the American Unlversity of Beirut using Program No. 240 obtained from Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.
(16) J. W. Rabalais, L. O. Werme, T. Bergmark, L. Karlsson, M. Hussain, and K. Siegbahn, J. Chem. Phys., 57, 1185 (1972); S. Evans, M. L. H. Green, B. Jewitt, A. F. Orchard, and C. F. Pygall, J. Chem. Soc., Faraday Trans. 2, 68, 1847 (1972).
(17) M.-M. Coutière, J. Demuynck, and A. Veillard, Theor. Chim. Acta, 27, 281 (1972).
(18) B. Floris, G. Illuminatl, P. E. Jones, and G. Ortaggi, Coord. Chem. Rev., 8, 39 (1972).
19) R. J. Gillespie and M. J. Morton, Inorg. Chem., 8, 811 (1970).
(20) R. L. DeKock, B. R. Hlgginson, D. R. Lloyd, A. Breeze, D. W. J. Cruickshank, and D. R. Armstrong, Mol. Phys., 24, 1059 (1972).
(21) G. Klopman, J. Am. Chem. Soc., 90, 223 (1968).

Roger L. DeKock
Department of Chemistry, American University of Beirut Beirut, Republic of Lebanon
Received December 12, 1974

Synthesis of the Tritetracontapeptide Corresponding to the Entire Amino Acid Sequence of Gastric Inhibitory Polypeptide ${ }^{1}$

Sir:
We wish to report the synthesis of a tritetracontapeptide corresponding to the entire amino acid sequence of porcine gastric inhibitory polypeptide (GIP), the structure of which was determined by Brown and Dryburgh ${ }^{2,3}$ in 1971. To date only partial syntheses of GIP have been described. ${ }^{4-6}$

In our present synthesis (Figure 1), amino acid derivatives bearing protecting groups removable by hydrogen fluoride ${ }^{7}$ were employed. The α-amino function of intermediates was protected by the TFA labile $\mathrm{Z}(\mathrm{OMe})$ group. ${ }^{8}$ Anisole containing 2% ethanedithiol ${ }^{9}$ rather than mercaptoethanol was employed to minimize destruction of the Trp residue during the various TFA deblocking steps. No brown color was produced under these conditions. The Trp content of intermediates was estimated in 3 N Tos-OH hydrolysates. ${ }^{10}$

Figure 1. Synthetic route to GIP
Nine relatively small peptide fragments served as the building blocks for construction of the entire amino acid sequence of GIP. Of these $\mathrm{Z}(\mathrm{OMe})$-Phe-Val- NHNH_{2} (IV) is a known compound. ${ }^{11}$ This strategy was adopted for the reason that these acylating agents could be readily removed by washing or precipitation following each coupling step.

The N-terminal octapeptide hydrazide, $\mathrm{Z}(\mathrm{OMe})$-Tyr-Ala-Glu(O- t - Bu)-Gly-Thr-Phe-Ile-Ser-NHNH ${ }_{2}$ (I, mp $249-255^{\circ} ;[\alpha]^{25} \mathrm{D}-6.7^{\circ}$ in DMSO; Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{~N}_{10} \mathrm{O}_{16}$: $\mathrm{C}, 57.84 ; \mathrm{H}, 6.83 ; \mathrm{N}, 12.49$. Found: C, $57.62 ; \mathrm{H}, 7.08 ; \mathrm{N}, 12.48$), was obtained by treatment of the corresponding methyl ester with hydrazine. The ester resulted from the DCC plus HOBT condensation ${ }^{12}$ of $\mathrm{Z}(\mathrm{OMe})-\mathrm{Tyr}-\mathrm{Ala}-\mathrm{Glu}(\mathrm{O}-t-\mathrm{Bu})$-Gly-OH and $\mathrm{H}-\mathrm{Thr}-\mathrm{Phe}-$ Ile-Ser-OMe. Z(OMe)-Tyr-Ser-Ile-Ala-Met-NHNH2 (II, $\mathrm{mp} 247-251^{\circ}$; $[\alpha]^{25} \mathrm{D}-2.0^{\circ}$ in DMSO; Anal. Caled for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{~S}: \mathrm{C}, 55.17 ; \mathrm{H}, 6.74 ; \mathrm{N}, 12.87$. Found: C, $54.89 ; \mathrm{H}, 6.73 ; \mathrm{N}, 12.93$) was prepared by the azide condensation ${ }^{13}$ of $\mathrm{Z}(\mathrm{OMe})$-Tyr-Ser- NHNH_{2} and H-Ile-Ala-Met-OMe followed by treatment of the resulting protected pentapeptide ester with hydrazine hydrate. Next, Z(OMe)-Lys(Z)-Ile-Arg(Tos)- NHNH_{2} (III, mp $177-181^{\circ} ;[\alpha]^{26} \mathrm{D}$ -7.4° in DMF; Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{~N} 9 \mathrm{O}_{10} \mathrm{~S}$: C, 57.18 ; H, 6.74; N, 14.29. Found: C, 57.17; H, 6.76; N, 14.24) was synthesized by the stepwise elongation method starting with $\mathrm{H}-\mathrm{Arg}(\mathrm{Tos})-\mathrm{OMe}$. The 5 -chloro-8-quinolyl ester procedure ${ }^{14}$ served to introduce $\mathrm{Z}(\mathrm{OMe})-\mathrm{Lys}(\mathrm{Z})-\mathrm{OH}$.
$\mathrm{Z}(\mathrm{OMe})$-Leu-Leu-Ala- $\mathrm{NHNH}_{2} \quad$ (V, mp 170-173 ${ }^{\circ}$; $[\alpha]^{25} \mathrm{D}-32.2^{\circ}$ in DMF; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{6}$: C, 58.39; H, 7.96; N, 14.18. Found: C, 58.09; H, 7.90; N, 14.21), Z(OMe)-Gln-Gln-Lys(Z)-Gly-NHNH ${ }_{2}$ (VI, mp $225-229^{\circ}$; $[\alpha]^{25} \mathrm{D}-43.0^{\circ}$ in DMSO; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{9} \mathrm{O}_{11}$: C, 54.46 ; H, 6.39; N, 16.33. Found: C, $54.25 ; \mathrm{H}, 6.31 ; \mathrm{N}, 16.16)$, and $\mathrm{Z}(\mathrm{OMe})-\mathrm{Lys}(\mathrm{Z})-\mathrm{Lys}(\mathrm{Z})$ -Ser-NHNH ${ }_{2}$ (VII, mp $198-202^{\circ}$; $[\alpha]^{25} \mathrm{D}-8.2^{\circ}$ in DMF; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{11}$: C, $59.46 ; \mathrm{H}, 6.61 ; \mathrm{N}, 12.14$. Found: C, $59.16 ; \mathrm{H}, 6.69$; $\mathrm{N}, 12.14$) were assembled in a stepwise manner by the active ester procedure. Again the 5-chloro-8-quinolyl ester method was employed for the introduction of $\mathrm{Z}(\mathrm{OMe})-\mathrm{Lys}(\mathrm{Z})-\mathrm{OH}$. $\mathrm{Z}(\mathrm{OMe})-\mathrm{Lys}(\mathrm{Z})$-His$\mathrm{NHNH}_{2}$ (VIII, mp $180-182^{\circ} ;[\alpha]^{25} \mathrm{D}-8.3^{\circ}$ in DMF; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{7}$: C, 58.47; H, 6.26; N, 16.46. Found: C, 58.41; H, 6.15; N, 16.62) and Z(OMe)-Ile-ThrNHNH_{2} were prepared by the DCC condensation of the respective amino acid derivatives followed by exposure of the resulting esters to hydrazine hydrate.
The crude protected dipeptide ester, $\mathrm{Z}(\mathrm{OMe})$-Lys(Z)-His-OMe, was exposed to methanol-acetic acid to remove the contaminating dicyclohexylamidino derivative. ${ }^{15}$

The hydrazide was then condensed with the triethylammonium salt of Gln via the azide procedure to give $\mathrm{Z}(\mathrm{OMe})$ -Ile-Thr-Gln-OH (IX, mp 181-184 ${ }^{\circ}$; $\left.\alpha\right]^{24} \mathrm{D}+7.7^{\circ}$ in DMF;

